ABSTRACT. Despite significant advances in science and medicine, the problem of hyperglycemia remains relevant. Patients with various levels of carbohydrate metabolism disorders have an increased risk of developing a number of other concomitant diseases, in particular, bone tissue pathologies. This, in turn, leads to an increased likelihood of complications in dental prosthetics using dental implants.
The aim of the study was to study the indicators of elemental homeostasis and bone metabolism in patients with normal and impaired carbohydrate metabolism before dental implantation.
Materials and methods. The study included 90 men who were scheduled for dental implantation. Three groups were formed during the study: control – conditionally healthy patients with fasting glucose < 5.5 mmol/l; main 1 – patients with early disorders of carbohydrate metabolism, glucose level 5.6-6.5 mmol/l; main 2 – patients with type 2 diabetes mellitus, glucose level 6.5-10 mmol/lL. Blood sampling was performed in all examined patients to assess bone metabolism and elemental status.
Results. The degree of manifestation of carbohydrate metabolism disorders affects the parameters of bone metabolism (higher activity of alkaline phosphatase and higher values of parathyroid hormone against the background of lower values of calcitonin and vitamin D) and leads to an imbalance of chemical elements. An inverse relationship has been established between the levels of calcium and zinc and indicators of carbohydrate metabolism (fasting glucose and glycated hemoglobin) in blood serum.
Conclusions. The data obtained show the need for an integrated approach to the study of chemical elements in patients with impaired carbohydrate metabolism, with an emphasis on zinc and calcium levels, in order to early detect and correct the elemental imbalance in order to reduce the risks of dental implantation.
KEYWORDS: microelements, bone tissue, carbohydrate metabolism, type 2 diabetes mellitus, dental implantation.
For citation: Molchanov M.K., Notova S.V. Indicators of elemental homeostasis and bone metabolism in patients with disorder carbohydrate metabolism before dental ipmplantation. Trace elemets in medicine. 2025;26(1):37−44. DOI: 10.19112/2413-6174- 2025-26-1-37-44
REFERENCES
Mamedov M.N., Sushkova L.T., Isakov R.V., Kucenko V.A., Drapkina O.M. Ocenka narushenij lipidnogo obmena i
giperglikemii v otkry`toj populyacii 30–69 let: rezul`taty` mnogocentrovogo issledovaniya. Kardiovaskulyarnaya terapiya i
profilaktika. 2023; 22(6): 3597. DOI: 10.15829/1728-8800-2023-3597. (In Russ.).
Miroshnikov S.V., Notova S.V., Kiyaeva E.V., Alidzhanova I.E`., Slobodskov A.A. Osobennosti e`lementnogo sostava volos i
razlichny`x struktur shhitovidnoj zhelezy` v e`ndemichnoj po deficitu joda oblasti. Vestnik OGU. 2013; 10(159): 17–20. (In Russ.).
Nurullina G.M., Axmadullina G.I. Osobennosti kostnogo metabolizma pri saxarnom diabete. Osteoporoz i osteo-patii. 2017;
20(3): 82–89. DOI: 10.14341/osteo2017382-89. (In Russ.).
Athyros V.G., Doumas M., Imprialos K.P., Stavropoulos K., Georgianou E., Katsimardou A., Karagiannis A. Diabetes and lipid metabolism. Hormones (Athens). 2018; 17(1): 61–67. DOI: 10.1007/s42000-018-0014-8.
Bjørklund G., Dadar M., Pivina L., Doşa M.D., Semenova Y., Aaseth J. The Role of Zinc and Copper in Insulin Resistance and
Diabetes Mellitus. Curr Med Chem. 2020; 27(39): 6643–6657. DOI: 10.2174/0929867326666190902122155.
Chapman M.J., Ginsberg H.N., Amarenco P., Andreotti F., Borén J., Catapano A.L., Descamps O.S., Fisher E., Kovanen P.T.,
Kuivenhoven J.A., Lesnik P., Masana L., Nordestgaard B.G., Ray K.K., Reiner Z., Taskinen M.R., Tokgözoglu L., Tybjærg-Hansen
A., Watts G.F., European Atherosclerosis Society Consensus Pane. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J. 2011; 32: 1345–1361.
DOI: 10.1093/eurheartj/ehr112.
Chen Y., Zhao W., Hu A., Lin S., Chen P., Yang B., Fan Z., Qi J., Zhang W., Gao H., Yu X., Chen H., Chen L., Wang H. Type
2 diabetic mellitus related osteoporosis: focusing on ferroptosis. J Transl Med. 2024; 22(1): 409. DOI: 10.1186/s12967-024-05191-x.
Ciosek Ż., Kot K., Kosik-Bogacka D., Łanocha-Arendarczyk N., Rotter I. The Effects of Calcium, Magnesium, Phosphorus,
Fluoride, and Lead on Bone Tissue. Biomolecules. 2021; 11(4): 506. DOI: 10.3390/biom11040506.
Faysal M.R., Akter T., Hossain M.S., Begum S., Banu M., Tasnim J., Sultana I., Krishna S.P., Alam S., Akter T., Jenea A.T.
Study of Serum Calcium and Magnesium Levels in Type 2 Diabetes Mellitus Patients. Mymensingh Med J. 2023; 32(1): 54–60.
Fernández-Cao J.C., Warthon-Medina M., H Moran V., Arija V., Doepking C., Serra-Majem L., Lowe N.M. Zinc Intake and
Status and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients. 2019; 11(5): 1027. DOI:
10.3390/nu11051027.
Jia M-J., Chen L. Effect of trace elements and nutrients on diabetes and its complications: a Mendelian randomization study.
Front. Nutr. 2024; 11: 1439217. DOI: 10.3389/fnut.2024.1439217.
Jiang Z., Wang H., Qi G., Jiang C., Chen K., Yan Z. Iron overload-induced ferroptosis of osteoblasts inhibits osteogenesis and
promotes osteoporosis: An in vitro and in vivo study. IUBMB Life. 2022; 74(11): 1052–1069. DOI: 10.1002/iub.2656.
Hostalek U. Global epidemiology of prediabetes – present and future perspectives. Clin Diabetes Endocrinol. 2019; 5: 5. DOI:
10.1186/s40842-019-0080-0
Lapmanee S., Charoenphandhu N., Aeimlapa R., Suntornsaratoon P., Wongdee K., Tiyasatkulkovit W., Kengkoom K.,
Chaimongkolnukul K., Seriwatanachai D., Krishnamra N. High dietary cholesterol masks type 2 diabetes-induced osteopenia and
changes in bone microstructure in rats. Lipids. 2014; 49(10): 975–986. DOI: 10.1007/s11745-014-3950-3.
Li M., Deng F., Qiao L., Wen X., Han J. The Critical Role of Trace Elements in Bone Health. Nutrients. 2024; 16(22): 3867.
DOI: 10.3390/nu16223867.
Mauri-Obradors E., Estrugo-Devesa A., Jané-Salas E., Viñas M., López-López J. Oral manifestations of Diabetes Mellitus. A
systematic review. Med Oral Patol Oral Cir Bucal. 2017; 22(5): e586–e594. DOI: 10.4317/medoral.21655.
Pittas A.G., Lau J., Hu F.B., Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review
and meta-analysis. The Journal of Clinical Endocrinology & Metabolism. 2007; 92(6): 2017–2029. DOI: 10.1210/jc.2007-0298.
Qiu H.L., Fan S., Zhou K., He Z., Browning M.H.E.M., Knibbs L.D., Zhao T., Luo Y.N., Liu X.X., Hu L.X., Li J.X., Zhang
Y.D., Xie Y.T., Heinrich J., Dong G.H., Yang B.Y. Global burden and drivers of hyperglycemia: Estimates and predictions from
1990 to 2050. Innovation (Camb). 2023; 4(4): 100450. DOI: 10.1016/j.xinn.2023.100450.
Ruan S., Guo X., Ren Y., Cao G., Xing H., Zhang X. Nanomedicines based on trace elements for intervention of diabetes
mellitus. Biomedicine & Pharmacotherapy. 2023; 168: 115684. DOI: 10.1016/j.biopha.2023.115684.
Ru Q., Li Y., Chen L., Wu Y., Min J., Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther. 2024; 9(1): 271. DOI: 10.1038/s41392-024-01969-z.
Sheu A., Greenfield J.R., White C.P., Center J.R. Assessment and treatment of osteoporosis and fractures in type 2 diabetes.
Trends Endocrinol Metab. 2022; 33(5): 333–344. DOI: 10.1016/j.tem.2022.02.006.
Siddiqui K., Bawazeer N., Joy S.S. Variation in macro and trace elements in progression of type 2 diabetes. Scientific World
Journal. 2014; 2014: 461591. DOI: 10.1155/2014/461591.
Tabak A.G., Herder C., Rathmann W., Brunner E.J., Kivimaki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012; 379: 2279–2290; DOI: 10.1016/S0140-6736(12)60283-9.
Tang X., Shay N.F. Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3T3-
L1 fibroblasts and adipocytes. Journal of Nutrition. 2001; 131(5): 1414–1420. DOI: 10.1093/jn/131.5.1414.
Wongdee K., Krishnamra N., Charoenphandhu N. Derangement of calcium metabolism in diabetes mellitus: negative outcome
from the synergy between impaired bone turnover and intestinal calcium absorption. J Physiol Sci. 2017; 67(1): 71–81. DOI:
10.1007/s12576-016-0487-7.