ABSTRACT. Space nutrition (products and dishes created specifically for astronauts) to ensure optimal physiological and psychological state must satisfy the daily needs of the astronaut's body not only in macronutrients (protein, fats, carbohydrates), but also in micronutrients.
The objective of the review is assessment of the consumption and sufficiency of astronauts with micronutrients during long-term space missions and justification of the need to increase the micronutrient value of space nutrition
Results. The calculation of the consumption of iron, zinc, calcium, potassium during the space missions is close to the recommended daily intake, while the consumption of minerals in some crew members may not reach the recommended norms. The actual diet of astronauts, balanced in terms of essential nutrients, does not always cover the astronaut's body's needs for micronutrients. An assessment of the sufficiency with vitamins and minerals by means of the blood or urine level shows that by the end of a long-duration spaceflight, the micronutrient status worsens. The blood concentration of vitamins D, K, folates, potassium, magnesium decreases, the level of biomarkers of collagen degradation increases, and the mineral density of bone tissue decreases. Taken together, the studies indicate that the vitamin composition of the astronauts' diet is inadequate, both in the pre-flight period and in space nutrition during the flight. Changes in the micronutrient status of astronauts that occurred during the flight persist for a long time or after returning to Earth even worsen.
Conclusion. During the preflight period, the micronutrient status of the crew members should be brought to the optimal level by taking vitamin-mineral supplement (VMS) containing all the vitamins in a dose corresponding to the physiological need for a long time (several months). The micronutrient density of traditional dishes and space food products should be increased by enriching them with vitamins. To compensate for the insufficient consumption of micronutrients with the diet during a long-term flight, daily intake of multicomponent VMS containing deficient micronutrients is necessary. It is necessary to develop technologies (for example, encapsulation) that ensure the preservation of vitamins when enriching dishes and food products for space nutrition.
KEYWORDS: vitamin, mineral, astronaut, micronutrient sufficiency, vitamin-mineral supplement.
For citation: Risnik D.V., Kodentsova V.M. Micronutrients in the nutrition of astronauts. Trace elemets in medicine. 2025;26(1):3−16. DOI: 10.19112/2413-6174-2025-26-1-3-16
REFERENCES
Kodentsova V.M., Risnik D.V., Moiseenok A.G. Algorithm for effective application of vitamin-mineral complexes. Journal of
the Grodno State Medical University. 2024; 22(2): 177−184. https://doi.org/10.25298/2221-8785-2024-22-2-177-184 (In Russ.).
Kodentsova V.M., Vrzhesinskaya O.A. Multivitamin-mineral complexes «dosa – effect» correlation. Voprosy pitaniia [Problems of Nutrition]. 2006; 75(1): 30−39 (In Russ.)
Kodentsova V.M., Vrzhesinskaya O.A., Mazo V.K. Vitamins and oxidative stress. Voprosy pitaniia [Problems of Nutrition].
2013; 82(3): 11−18 (In Russ.).
Kodentsova V.M., Risnik D.V Micronutrient metabolic networks and multiple micronutrient deficiency: a rationale for the advantages of vitamin-mineral supplements. Trace tlementa in medicine. 2020. 21(4): 3−20. DOI: 10.19112/2413-6174-2020-21-4-3-20
(In Russ.).
Kodentsova V.M., Risnik D.V., Bessonov V.V. Iron compounds for food fortification: comparative analysis of efficiency.
Trace elements in medicine. 2023; 24(1): 10−19. DOI: 10.19112/2413-6174-2023-24-1-10-19 (In Russ.).
Kodentsova V.M., Risnik D.V., Sharafetdinov Kh.Kh. Bioavailability and effectiveness of vitamin-mineral supplements. Trace
elemets in medicine. 2024; 25(1):3− 15. DOI: 10.19112/2413-6174-2024-25-1-3-15 (In Russ.).
Spirichev VB, Gromova O.A. Vitamin D and its synergists. Zemskij vrach. 2012; 2: 33−38 (In Russ.).
Austermann K, Baecker N, Zwart SR, Fimmers R, Stehle P, Smith SM, Heer M. Effects of antioxidant supplementation on
bone mineral density, bone mineral content and bone structure in healthy men during 60 days of 6° head-down tilt bed rest: Results
from a randomised controlled trial. Nutr Bull. 2023; 48(2): 256−266. doi: 10.1111/nbu.12619.
Bergouignan A., Stein T.P., Habold C., Coxam V., Gorman D.O., Blanc S. Towards human exploration of space: The THESEUS review series on nutrition and metabolism research priorities. NPJ Microgravity. 2016; 2: 1–8. doi:
10.1038/npjmgrav.2016.29.
Briguglio M. Nutritional Orthopedics and Space Nutrition as Two Sides of the Same Coin: A Scoping Review. Nutrients.
2021; 13(2): 483. doi: 10.3390/nu13020483.
Bychkov A., Reshetnikova P., Bychkova E., Podgorbunskikh E., Koptev V. The current state and future trends of space nutrition from a perspective of astronauts' physiology. International Journal of Gastronomy and Food Science. 2021; 24.
https://doi.org/10.1016/j.ijgfs.2021.100324.
Caillot-Augusseau A, Vico L, Heer M, Voroviev D, Souberbielle JC, Zitterman A, Alexandre C, Lafage-Proust MH. Space
flight is associated with rapid decreases of undercarboxylated osteocalcin and increases of markers of bone resorption without changes in their circadian variation: observations in two cosmonauts. Clin Chem. 2000; 46(8 Pt 1): 1136−1143
Chaloulakou S, Poulia KA, Karayiannis D. Physiological Alterations in Relation to Space Flight: The Role of Nutrition. Nutrients. 2022; 14(22): 4896. doi: 10.3390/nu14224896.
Cialdai F, Bolognini D, Vignali L, Iannotti N, Cacchione S, Magi A, Balsamo M, Vukich M, Neri G, Donati A, Monici M,
Capaccioli S, Lulli M. Effect of space flight on the behavior of human retinal pigment epithelial ARPE-19 cells and evaluation of coenzyme Q10 treatment. Cell Mol Life Sci. 2021; 78(23): 7795−7812. doi: 10.1007/s00018-021-03989-2.
Coope M., Perchonok M. Douglas G.L. Initial assessment of the nutritional quality of the space food system over three years of
ambient storage. NPJ Microgravity. 2017; 17: 3. https://doi.org/10.1038/s41526-017-0022-z.
Dakkumadugula A, Pankaj L, Alqahtani AS, Ullah R, Ercisli S, Murugan R. Space nutrition and the biochemical changes
caused in Astronauts Health due to space flight: A review. Food Chem X. 2023; 20: 100875. doi: 10.1016/j.fochx.2023.100875.
Gao R., Chilibeck P. D. Nutritional interventions during bed rest and spaceflight: prevention of muscle mass and strength loss,
bone resorption, glucose intolerance, and cardiovascular problems. Nutrition Research. 2020; 82: 11−24
https://doi.org/10.1016/j.nutres.2020.07.001.
Gómez X, Sanon S, Zambrano K, Asquel S, Bassantes M, Morales JE, Otáñez G, Pomaquero C, Villarroel S, Zurita A,
Calvache C, Celi K, Contreras T, Corrales D, Naciph MB, Peña J, Caicedo A. Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. NPJ Microgravity. 2021; 7(1): 35. doi: 10.1038/s41526-021-00162-8.
Knapen M.H., Braam L.A., Teunissen K.J., Van't Hoofd C.M., Zwijsen R.M., van den Heuvel E.G., et al. Steady-state vitamin
K2 (menaquinone-7) plasma concentrations after intake of dairy products and soft gel capsules. Eur J Clin Nutr. 2016; 70(7):
831−836. DOI: 10.1038/ejcn.2016.3.
Macias B.R., Patel N.B., Gibson C.R., Samuels B.C., Laurie S.S., Otto C., Ferguson C.R., Lee S.M.C., Ploutz-Snyder R.,
Kramer L.A., Mader T.H., Brunstetter T., Stenger M.B. Association of Long-Duration Spaceflight with Anterior and Posterior Ocular
Structure Changes in Astronauts and Their Recovery. JAMA Ophthalmol. 2020; 138(5): 553−559. doi:
10.1001/jamaophthalmol.2020.0673
Mehare A., Chakole S., Wandile B. Navigating the Unknown: A Comprehensive Review of Spaceflight-Associated NeuroOcular Syndrome. Cureus. 2024; 16(2): e53380. doi: 10.7759/cureus.53380.
Mortazavi S.M.J., Sharif-Zadeh S, Mozdarani H., Foadi M., Haghani M., Sabet E. Future role of vitamin C in radiation mitigation and its possible applications in manned deep space missions: Survival study and the measurement of cell viability. Physica
Medica: European Journal of Medical Physics. 2014; 3: e97. doi: 10.1016/j.ejmp.2014.07.278.
Ritieni A., Kyriacou M.C., Rouphael Y., De Pascale S. Iodine-biofortified microgreens as high nutraceutical value component
of space mission crew diets and candidate for extraterrestrial cultivation. Plants (Basel). 2023; 12(14): 2628. doi:
10.3390/plants12142628.
Seidler R.D., Stern C., Basner M., Stahn A..C, Wuyts F.L., Zu Eulenburg P. Future research directions to identify risks and
mitigation strategies for neurostructural, ocular, and behavioral changes induced by human spaceflight: A NASA-ESA expert group
consensus report. Front Neural Circuits. 2022; 16: 876789. doi: 10.3389/fncir.2022.876789.
Shea M.K., Berkner K.L., Ferland G., Fu X., Holden R.M, Booth S.L. Perspective: Evidence before Enthusiasm − A Critical
Review of the Potential Cardiovascular Benefits of Vitamin K. Adv Nutr. 2021; 12(3): 632–646. doi: 10.1093/advances/nmab004.
Sihver L., Mortazavi S..MJ. Biological Protection in Deep Space Missions. J Biomed Phys Eng. 2021; 11(6): 663−674. doi:
10.31661/jbpe.v0i0.1193.
Smith S.M., Heer M.A., Shackelford L.C., Sibonga J.D., Ploutz-Snyder L., Zwart S.R. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry. J Bone Miner Res. 2012; 27(9):
1896−906. doi: 10.1002/jbmr.1647.
Smith S.M., Zwart S.R., Block G., Rice B.L., Davis-Street J.E. The nutritional status of astronauts is altered after long-term
space flight aboard the International Space Station. J Nutr. 2005; 135(3): 437−443. doi: 10.1093/jn/135.3.437.
Smith SM, Zwart SR. Spaceflight-related ocular changes: the potential role of genetics, and the potential of B vitamins as a
countermeasure. Curr Opin Clin Nutr Metab Care. 2018; 21: 481–488. doi: 10.1097/MCO.0000000000000510.
Sonar C.R., Parhi A., Liu F., Patel J., Rasco B., Tang J., Sablani S.S. Investigating thermal and storage stability of vitamins in
pasteurized mashed potatoes packed in barrier packaging films. Food Packaging and Shelf Life. 2020; 24: 100486.
Tang H., Rising H.H., Majji M., Brown R.D. Long-Term Space Nutrition: A Scoping Review. Nutrients. 2021; 14(1): 194. doi:
10.3390/nu14010194.
Tocci D., Ducai T., Stoute C.A.B., Hopkins G., Sabbir M.G., Beheshti A., Albensi B.C. Monitoring inflammatory, immune
system mediators, and mitochondrial changes related to brain metabolism during space flight. Front Immunol. 2024; 15: 1422864.
doi: 10.3389/fimmu.2024.1422864.
Wang H., Ma Y. The potential of vitamin K as a regulatory factor of bone metabolism. A review. Nutrients. 2023; 15(23):
4935. doi: 10.3390/nu15234935.
Zheng M., Charvat J., Zwart S.R., Mehta S.K., Crucian B.E., Smith S.M., He J., Piermarocchi C. and Mias G.I. Time-resolved
molecular measurements reveal changes in astronauts during spaceflight. Front. Physiol. 2023; 14: 1219221. doi:
10.3389/fphys.2023.1219221.
Zwart S.R., Rice B.L., Dlouhy H., Shackelford L.C., Heer M., Koslovsky M.D., Smith S.M. Dietary acid load and bone turnover during long-duration spaceflight and bed rest. Am J Clin Nutr. 2018; 107(5): 834−844. DOI: 10.1093/ajcn/nqy029.