Версия сайта: English Russian
Trace Elements in Medicine
International scientific and practical peer-reviewed journal
Return back

PATHOPHYSIOLOGICAL ASSOCIATION OF COPPER WITH NEURODEGENERATIVE DISORDERS (REVIEW)

N.B. Pilkevich, V.A. Markovskaya, O.V. Yavorskaya, A.P. Smirnova

Belgorod State National Research University,
st. Pobedy, 85, Belgorod, 308015, Russian Federation

(Download)

ABSTRACT. Neurodegenerative diseases are a group of chronic progressive diseases or disorders that mainly occur in old age and are characterized by functional deterioration and eventual loss of neuronal cells in certain areas of the brain with memory loss, learning and thinking disorders, and difficulty in thinking. performing normal daily activities.

The most common age-related neurodegenerative disorders are Alzheimer's and Parkinson's diseases. The number of people in the world with dementia in 2016 reached 43.8 million and was the fifth leading cause of death in the world and the second largest cause of death among the population over 70 years of age.

Metals are involved in various pathophysiological mechanisms associated with neurodegenerative diseases by increasing oxidative stress in brain cells, leading to neuronal death and neurodegeneration.

The aim of this work was to analyze publications devoted to the study of the pathophysiological relationship of copper with neurodegenerative disorders.

In this review, we reviewed original articles that were searched in the electronic databases PubMed, eLIBRARY.RU, Web of Science, Google Scholar.

Copper is the third most abundant trace element in the body with important biological functions including energy metabolism, antioxidant protection and iron metabolism. It is essential for normal mitochondrial function, and any functional loss of copper can impair the function of the electron transport chain and deplete neuronal energy. Copper levels are highly regulated.

Copper deficiency can lead to low energy levels, impaired glucose and cholesterol metabolism, increased oxidative damage, changes in the function and structure of circulating blood and immune cells, and can also cause or exacerbate neurodegenerative diseases, anemia, metabolic syndrome, cardiovascular diseases, cancer, as well as increase the risk of developing infectious and inflammatory conditions with a tendency to chronicity.

Thus, a complete understanding of copper metabolism and its role in the development of neurodegenerative diseases underlies the identification of new effective methods for their treatment.

KEYWORDS: pathophysiology, copper, Alzgermer's disease, Parkinson's disease, neurodegenerative disorders.